POJ_2349_建图+kruskal

POJ 2349

  • 题意:一个卫星频道等同于2个点之间可以任意通信,
  • 处理点之后,建图,跑kruskal,然后将最短路的最大边都用卫星频道替代,
  • 所以最大的D是最小生成树里面除掉卫星通信边之后的最大边
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    #include <iostream>
    #include <string.h>
    #include <math.h>
    #include <algorithm>

    using namespace std;
    const int maxn=1e6;
    int s,n;
    struct point {
    int x,y;
    point(){}
    point(int a,int b) {
    x = a; y = b;
    }
    } points[maxn];
    struct node{
    int u,v;
    double div;
    node(){}
    node(int a,int b,double c) {
    u = a; v = b; div = c;
    }
    bool operator<(const node& t)const {
    return div<t.div;
    }
    } e[maxn];

    int pre[maxn];

    int find(int x){
    if (x == pre[x]) return x;
    else return pre[x] = find(pre[x]);
    }
    double Distance(point& a,point& b) {
    double dx = (a.x - b.x)*(a.x - b.x);
    double dy = (a.y - b.y)*(a.y - b.y);
    return sqrt(dx + dy);
    }

    double edge[maxn];

    int main(){
    // freopen("a.txt","r",stdin);
    int times; cin >> times;
    while (times--) {
    cin >> s >> n;
    for (int i=1;i<=n;i++) pre[i]=i;

    for (int i=1; i<=n; i++) {
    int a,b; cin >> a >> b;
    points[i] = point(a,b);
    }
    int cnt = 0;
    for (int i=1; i<=n; i++)
    for (int j=i; j<=n; j++) {
    double div = Distance(points[i],points[j]);
    e[cnt++] = node (i,j,div);
    e[cnt++] = node (j,i,div );
    }
    int m=0;
    //按照边的权值排序

    sort(e,e+cnt);
    for(int i=0;i<cnt;i++){
    int a=e[i].u;
    int b=e[i].v;
    if( find(a) != find(b) ){ //根节点不同说明没有环
    // ans+=e[i].div;
    edge[m++] = e[i].div;
    // printf("%lf \n",e[i].div);
    pre[find(a)]=find(b);
    }
    }
    printf("%.2lf\n",edge[m-s]);
    }
    return 0;
    }

本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!